Lecture 25: Assignment 4 Discussion#
Point-to-Point Routing
Consider a \(5 \times 5\) grid-like network (Table 1.)
From |
To |
\(d_{ij}\) (km) |
\(t_{ij}\) (mins) |
\(f_{ij}\) (l) |
---|---|---|---|---|
1 |
2 |
1.30 |
1.08 |
0.99 |
1 |
6 |
1.38 |
1.39 |
1.33 |
2 |
3 |
1.80 |
1.48 |
1.17 |
2 |
7 |
1.07 |
2.23 |
1.41 |
3 |
4 |
1.83 |
1.43 |
1.28 |
3 |
8 |
1.39 |
1.37 |
1.03 |
4 |
5 |
1.77 |
1.20 |
1.12 |
4 |
9 |
1.54 |
1.54 |
1.24 |
5 |
10 |
1.75 |
1.29 |
1.15 |
6 |
7 |
1.40 |
1.36 |
1.07 |
6 |
11 |
1.45 |
1.52 |
1.19 |
7 |
8 |
1.23 |
1.83 |
1.36 |
7 |
12 |
1.60 |
1.46 |
1.21 |
8 |
9 |
1.72 |
1.50 |
1.10 |
8 |
13 |
1.12 |
2.01 |
1.37 |
9 |
10 |
1.65 |
1.35 |
1.08 |
9 |
14 |
1.35 |
1.25 |
0.98 |
10 |
15 |
1.95 |
1.34 |
1.30 |
11 |
12 |
1.70 |
1.29 |
1.11 |
11 |
16 |
1.55 |
1.38 |
1.16 |
12 |
13 |
1.47 |
1.49 |
1.09 |
12 |
17 |
1.72 |
1.28 |
1.18 |
13 |
14 |
1.27 |
1.75 |
1.40 |
13 |
18 |
1.61 |
1.40 |
1.22 |
14 |
15 |
1.81 |
1.33 |
1.14 |
14 |
19 |
1.19 |
1.78 |
1.39 |
15 |
20 |
1.85 |
1.31 |
1.25 |
16 |
17 |
1.66 |
1.22 |
1.06 |
16 |
21 |
1.58 |
1.37 |
1.13 |
17 |
18 |
1.49 |
1.27 |
1.04 |
17 |
22 |
1.67 |
1.41 |
1.15 |
18 |
19 |
1.42 |
1.45 |
1.10 |
18 |
23 |
1.64 |
1.32 |
1.17 |
19 |
20 |
1.36 |
1.52 |
1.35 |
19 |
24 |
1.78 |
1.42 |
1.20 |
20 |
25 |
1.99 |
1.37 |
1.28 |
21 |
22 |
1.53 |
1.39 |
1.12 |
22 |
23 |
1.61 |
1.35 |
1.09 |
23 |
24 |
1.50 |
1.31 |
1.08 |
24 |
25 |
1.70 |
1.42 |
1.15 |
Assuming node 1 as the origin node 25 as the destination, answer the questions below.
a. Formulate the objective functions for the shortest route, fastest route, and eco-route. (1)
Shortest Route:
Fastest Route:
Eco-Route:
b. Formulate all constraints. (5)
c. Formulate the above optimisation problems (each) in a spreadsheet. (9)
Note
Each sheet carries 3 marks
d. Report the optimal solution (total distance, total time, and total fuel consumed in each shortest, fastest, and eco-route). (1)
Shortest Route: 1 - 2 - 7 - 8 - 13 - 14 - 19 - 20 - 25
Fastest Route: 1 - 2 - 3 - 8 - 9 - 14 - 19 - 20 - 25
Eco-Route: 1 - 2 - 3 - 4 - 5 - 10 - 15 - 20 - 25
Path |
Distance |
Time |
Fuel |
---|---|---|---|
SR |
9.64 |
13.47 |
10.26 |
FR |
14.05 |
10.01 |
9.32 |
ER |
11.53 |
12.47 |
8.16 |
Note
Each solution carries 1/3 marks
Location Routing Problem
Amazon plans to serve 10000 customers in a service region of size 307.78 \(\text{km}^2\) from the following potential distribution facilities (Table 2.) using a fleet of diesel and electric vans (Table 3.). Cosnidering a planning horizon of 7 years, each with 330 working days, which facilities should Amazon choose to operate from?
Table 2. Potential Distribution Facility Locations
Location |
Fixed Cost (in ₹cr) |
Distance from Service Region (in km) |
Capacity (in customers) |
---|---|---|---|
Location #1 |
75 |
1 |
3000 |
Location #2 |
50 |
5 |
10000 |
Location #3 |
10 |
20 |
30000 |
Table 3. Fleet Characteristics
Vehicle Type |
Purchase Cost (₹) |
Operational Cost (₹ per km) |
Maximum Fleet Size |
Maximum Tours |
Maximum Customers |
---|---|---|---|---|---|
#1 Diesel Van |
6,00,000 |
₹35 |
20 |
3 |
200 |
#2 Electric Van |
9,00,000 |
₹28 |
- |
2 |
150 |
Using the following notations, answer the questions below,
Notations:
number of type \(v\) delivery vehicles purchased at depot node \(d\): \(f^d_v \ \forall \ v \in [1,2], \ d \in [1,3]\)
number of tours per type \(v\) delivery vehicle at depot node \(d\): \(m^d_v \ \forall \ v \in [1,2], \ d \in [1,3]\)
number of customer per delivery tour per type \(v\) delivery vehicle at depot node \(d\): \(c^d_v \ \forall \ v \in [1,2], \ d \in [1,3]\): \(c_i \ \forall \ i \in [1,3]\)
a. Formulate the objective function. (1)
Rendering,
Note
Each row of the equation carries 1/3 marks
b. Formulate the constraints. (3)
Note
Each constraint carries 1/6 marks
c. Formulate the above optimisation problem in a spreadsheet. (3)
d. Report the optimal solution. (2)
Table 4. Decision Variable Values - \(y_d\)
Location |
\(y_d\) |
---|---|
1 |
0 |
2 |
0 |
3 |
1 |
Table 5. Decision Variable Values - \(f^3_v, m^3_v, c^3_v\)
Vehicle Fleet |
\(f^3_v\) |
\(m^3_v\) |
\(c^3_v\) |
---|---|---|---|
#1 Diesel Van |
17 |
3 |
197 |
#2 Electric Van |
0 |
0 |
0 |
Note
Each decision variable carries 1/2 marks