Lecture 20: Assignment 3 Discussion

Lecture 20: Assignment 3 Discussion#

  1. Transhipment Problem

Tata operates four automobile manufacturing plants in Gujarat, one each at Naliya, Palanpur, Porbandar, and Vapi that cater to four fulfillment sites across India, one each in Delhi, Mumbai, Chennai, and Kolkata, either directly or via one warehouse located in Nagpur. Table 1 below presents supply capacities of the plants, handling volume of the warehouse, and demand requirements of the sites (in thousand automobile units). Further, Table 2 details the distance between plants, warehouses, and sites (in kms). Determine the shipping plan for the company that minimises the total operational cost while satsifying the supply, demand and volume constraints. Assume operational cost to be ₹25/km per thousand automobile units when transported via the warehouse and .

Table 1. Threshold quantity of automobile units

Facility

Quantity

Plant 1 (Naliya)

45

Plant 2 (Palanpur)

60

Plant 3 (Porbandar)

50

Plant 4 (Vapi)

55

Warehouse (Nagpur)

100

Site 1 (Delhi)

60

Site 2 (Mumbai)

35

Site 3 (Chennai)

40

Site 4 (Kolkata)

45

Table 2. Distance

From/To

Plant 1 (Naliya)

Plant 2 (Palanpur)

Plant 3 (Porbandar)

Plant 4 (Vapi)

Warehouse (Nagpur)

Site 1 (Delhi)

Site 2 (Mumbai)

Site 3 (Chennai)

Site 4 (Kolkata)

Plant 1 (Naliya)

0

445

470

780

1260

1200

945

2200

2440

Plant 2 (Palanpur)

445

0

525

500

950

790

665

1915

1995

Plant 3 (Porbandar)

470

525

0

710

1235

1310

870

2170

2450

Plant 4 (Vapi)

780

500

710

0

765

1215

170

1520

1880

Warehouse (Nagpur)

1260

950

1235

765

0

1135

770

1125

1200

Site 1 (Delhi)

1200

790

1310

1215

1135

0

1380

2180

1470

Site 2 (Mumbai)

945

665

870

170

770

1380

0

1345

1885

Site 3 (Chennai)

2200

1915

2170

1520

1125

2180

1345

0

1670

Site 4 (Kolkata)

2440

1995

2350

1880

1200

1470

1885

1670

0

Use the following notations:

  • \(x_{ij}\) - flows from plant i to site j

  • \(y_{i0}\) - flows from plant i to warehouse

  • \(y_{0j}\) - flows from warehouse to yo site j

  1. Formulate a linear optimisation model for this problem. (Begin by writing the compact mathematical form first, and thereafter express in the expanded form) (6)

\[ \min_{\mathbf{x}} z = \sum_{i=1}^{4} \sum_{j=1}^{4} c_dd_{ij}x_{ij} + \sum_{i=1}^{4} c_wd_{i0}y_{i0} + \sum_{j=1}^{4} c_wd_{0j}y_{0j} \]

Subject to:

\[\begin{split} \begin{aligned} \sum_{j=1}^{4} x_{ij} + y_{i0} & \leq s_i & \ \forall \ i \in [1,m] \\ \sum_{i=1}^{4} x_{ij} + y_{0i} & \geq d_j & \ \forall \ j \in [1,n] \\ \sum_{i=1}^{4} y_{i0} & \leq q_0 \\ \sum_{i=1}^{4} y_{i0} & = \sum_{j=1}^{4} y_{0j} \\ x_{ij}, \ y_{i0} , \ y_{0j} & \geq 0 & \ \forall \ i \in [1,4], \ j \in [1,4] \end{aligned} \end{split}\]

Rendering,

\[\begin{split} \begin{aligned} \min_{\mathbf{x}} z = & 30(1200x_{11} & + & 945x_{12} & + & 2200x_{13} & + & 2440x_{14}) & + \\ & 30(790x_{21} & + & 665x_{22} & + & 1915x_{23} & + & 1995x_{24}) & + \\ & 30(1310x_{31} & + & 870x_{32} & + & 2170x_{33} & + & 2450x_{34}) & + \\ & 30(1215x_{41} & + & 170x_{42} & + & 1520x_{43} & + & 1880x_{44}) & + \\ & 25(1260y_{10} & + & 950y_{20} & + & 1235y_{30} & + & 765y_{40} \ \ ) & + \\ & 25(1135y_{01} & + & 770y_{02} & + & 1125y_{03} & + & 1200y_{04}) \end{aligned} \end{split}\]

Subject to:

\[\begin{split} \begin{aligned} x_{11} + x_{12} + x_{13} + x_{14} + y_{10} & \leq 45 \\ x_{21} + x_{22} + x_{23} + x_{24} + y_{20} & \leq 60 \\ x_{31} + x_{32} + x_{33} + x_{34} + y_{30} & \leq 50 \\ x_{41} + x_{42} + x_{43} + x_{44} + y_{40} & \leq 55 \\ x_{11} + x_{21} + x_{31} + x_{41} + y_{01} & \geq 60 \\ x_{12} + x_{22} + x_{32} + x_{34} + y_{02} & \geq 35 \\ x_{13} + x_{23} + x_{33} + x_{43} + y_{03} & \geq 40 \\ x_{14} + x_{24} + x_{34} + x_{44} + y_{04} & \geq 45 \\ y_{10} + y_{20} + y_{30} + y_{40} & \leq 100 \\ y_{10} + y_{20} + y_{30} + y_{40} & = y_{01} + y_{02} + y_{03} + y_{04} \\ x_{ij}, \ y_{i0} , \ y_{0j} & \geq 0 & \ \forall \ i \in [1,4], \ j \in [1,4] \end{aligned} \end{split}\]

Note

Each equation carries 1/2 marks

  1. Solve the above linear optimisation model using a spreadsheet to find the optimal solution. (10)

From/To

Site 1 (Delhi)

Site 2 (Mumbai)

Site 3 (Chennai)

Site 4 (Kolkata)

Warehouse (Nagpur)

Plant 1 (Naliya)

0

0

0

0

15

Plant 2 (Palanpur)

60

0

0

0

0

Plant 3 (Porbandar)

0

0

0

0

50

Plant 4 (Vapi)

0

35

20

0

0

Warehouse (Nagpur)

0

0

20

45

0

  1. Introduce slack into each technical constraint and transform the above linear optimisation model. (3)

\[\begin{split} \begin{aligned} \min_{\mathbf{x}} z = & 30(1200x_{11} & + & 945x_{12} & + & 2200x_{13} & + & 2440x_{14}) & + \\ & 30(790x_{21} & + & 665x_{22} & + & 1915x_{23} & + & 1995x_{24}) & + \\ & 30(1310x_{31} & + & 870x_{32} & + & 2170x_{33} & + & 2350x_{34}) & + \\ & 30(1215x_{41} & + & 170x_{42} & + & 1520x_{43} & + & 1880x_{44}) & + \\ & 25(1260y_{10} & + & 950y_{20} & + & 1235y_{30} & + & 765y_{40} \ \ ) & + \\ & 25(1135y_{01} & + & 770y_{02} & + & 1125y_{03} & + & 1200y_{04}) \end{aligned} \end{split}\]

Subject to:

\[\begin{split} \begin{aligned} x_{11} + x_{12} + x_{13} + x_{14} + y_{10} + s_1 & = 45 \\ x_{21} + x_{22} + x_{23} + x_{24} + y_{20} + s_2 & = 60 \\ x_{31} + x_{32} + x_{33} + x_{34} + y_{30} + s_3 & = 50 \\ x_{41} + x_{42} + x_{43} + x_{44} + y_{40} + s_4 & = 55 \\ x_{11} + x_{21} + x_{31} + x_{41} + y_{01} & = s_5 + 60 \\ x_{12} + x_{22} + x_{32} + x_{34} + y_{02} & = s_6 + 35 \\ x_{13} + x_{23} + x_{33} + x_{43} + y_{03} & = s_7 + 40 \\ x_{14} + x_{24} + x_{34} + x_{44} + y_{04} & = s_8 + 45 \\ y_{10} + y_{20} + y_{30} + y_{40} + s_9 & = 100 \\ y_{10} + y_{20} + y_{30} + y_{40} & = y_{01} + y_{02} + y_{03} + y_{04} \\ x_{ij}, \ y_{i0} , \ y_{0j}, \ s_k & \geq 0 & \ \forall \ i \in [1,4], \ j \in [1,4], k \in [1,9] \end{aligned} \end{split}\]

Note

Each equation carries 1/6 marks

  1. Evaluate slack at the optimal. (3)

Facility

Quantity

Plant 1 (Naliya)

30

Plant 2 (Palanpur)

0

Plant 3 (Porbandar)

0

Plant 4 (Vapi)

0

Warehouse (Nagpur)

15

Site 1 (Delhi)

0

Site 2 (Mumbai)

0

Site 3 (Chennai)

0

Site 4 (Kolkata)

0

Note

Each row carries 1/3 marks

  1. Infer shadow price by relaxing each constraints for each plant supply capacity constraint, warehouse handling volume constraint, and site demand requirement constraint. (3)

Facility

Quantity

Plant 1 (Naliya)

0

Plant 2 (Palanpur)

7750

Plant 3 (Porbandar)

625

Plant 4 (Vapi)

14025

Warehouse (Nagpur)

0

Site 1 (Delhi)

31450

Site 2 (Mumbai)

19125

Site 3 (Chennai)

59625

Site 4 (Kolkata)

61500

Note

Each row carries 1/3 marks