Lecture 20: Assignment 3 Discussion#
Transhipment Problem
Tata operates four automobile manufacturing plants in Gujarat, one each at Naliya, Palanpur, Porbandar, and Vapi that cater to four fulfillment sites across India, one each in Delhi, Mumbai, Chennai, and Kolkata, either directly or via one warehouse located in Nagpur. Table 1 below presents supply capacities of the plants, handling volume of the warehouse, and demand requirements of the sites (in thousand automobile units). Further, Table 2 details the distance between plants, warehouses, and sites (in kms). Determine the shipping plan for the company that minimises the total operational cost while satsifying the supply, demand and volume constraints. Assume operational cost to be ₹25/km per thousand automobile units when transported via the warehouse and .
Table 1. Threshold quantity of automobile units
Facility |
Quantity |
---|---|
Plant 1 (Naliya) |
45 |
Plant 2 (Palanpur) |
60 |
Plant 3 (Porbandar) |
50 |
Plant 4 (Vapi) |
55 |
Warehouse (Nagpur) |
100 |
Site 1 (Delhi) |
60 |
Site 2 (Mumbai) |
35 |
Site 3 (Chennai) |
40 |
Site 4 (Kolkata) |
45 |
Table 2. Distance
From/To |
Plant 1 (Naliya) |
Plant 2 (Palanpur) |
Plant 3 (Porbandar) |
Plant 4 (Vapi) |
Warehouse (Nagpur) |
Site 1 (Delhi) |
Site 2 (Mumbai) |
Site 3 (Chennai) |
Site 4 (Kolkata) |
---|---|---|---|---|---|---|---|---|---|
Plant 1 (Naliya) |
0 |
445 |
470 |
780 |
1260 |
1200 |
945 |
2200 |
2440 |
Plant 2 (Palanpur) |
445 |
0 |
525 |
500 |
950 |
790 |
665 |
1915 |
1995 |
Plant 3 (Porbandar) |
470 |
525 |
0 |
710 |
1235 |
1310 |
870 |
2170 |
2450 |
Plant 4 (Vapi) |
780 |
500 |
710 |
0 |
765 |
1215 |
170 |
1520 |
1880 |
Warehouse (Nagpur) |
1260 |
950 |
1235 |
765 |
0 |
1135 |
770 |
1125 |
1200 |
Site 1 (Delhi) |
1200 |
790 |
1310 |
1215 |
1135 |
0 |
1380 |
2180 |
1470 |
Site 2 (Mumbai) |
945 |
665 |
870 |
170 |
770 |
1380 |
0 |
1345 |
1885 |
Site 3 (Chennai) |
2200 |
1915 |
2170 |
1520 |
1125 |
2180 |
1345 |
0 |
1670 |
Site 4 (Kolkata) |
2440 |
1995 |
2350 |
1880 |
1200 |
1470 |
1885 |
1670 |
0 |
Use the following notations:
\(x_{ij}\) - flows from plant i to site j
\(y_{i0}\) - flows from plant i to warehouse
\(y_{0j}\) - flows from warehouse to yo site j
Formulate a linear optimisation model for this problem. (Begin by writing the compact mathematical form first, and thereafter express in the expanded form) (6)
Subject to:
Rendering,
Subject to:
Note
Each equation carries 1/2 marks
Solve the above linear optimisation model using a spreadsheet to find the optimal solution. (10)
From/To |
Site 1 (Delhi) |
Site 2 (Mumbai) |
Site 3 (Chennai) |
Site 4 (Kolkata) |
Warehouse (Nagpur) |
---|---|---|---|---|---|
Plant 1 (Naliya) |
0 |
0 |
0 |
0 |
15 |
Plant 2 (Palanpur) |
60 |
0 |
0 |
0 |
0 |
Plant 3 (Porbandar) |
0 |
0 |
0 |
0 |
50 |
Plant 4 (Vapi) |
0 |
35 |
20 |
0 |
0 |
Warehouse (Nagpur) |
0 |
0 |
20 |
45 |
0 |
Introduce slack into each technical constraint and transform the above linear optimisation model. (3)
Subject to:
Note
Each equation carries 1/6 marks
Evaluate slack at the optimal. (3)
Facility |
Quantity |
---|---|
Plant 1 (Naliya) |
30 |
Plant 2 (Palanpur) |
0 |
Plant 3 (Porbandar) |
0 |
Plant 4 (Vapi) |
0 |
Warehouse (Nagpur) |
15 |
Site 1 (Delhi) |
0 |
Site 2 (Mumbai) |
0 |
Site 3 (Chennai) |
0 |
Site 4 (Kolkata) |
0 |
Note
Each row carries 1/3 marks
Infer shadow price by relaxing each constraints for each plant supply capacity constraint, warehouse handling volume constraint, and site demand requirement constraint. (3)
Facility |
Quantity |
---|---|
Plant 1 (Naliya) |
0 |
Plant 2 (Palanpur) |
7750 |
Plant 3 (Porbandar) |
625 |
Plant 4 (Vapi) |
14025 |
Warehouse (Nagpur) |
0 |
Site 1 (Delhi) |
31450 |
Site 2 (Mumbai) |
19125 |
Site 3 (Chennai) |
59625 |
Site 4 (Kolkata) |
61500 |
Note
Each row carries 1/3 marks